Вычислить первый дифференциал функции. Дифференциал функции, его геометрический смысл. Производная и дифференциал

Задача о скорости движущейся точки

Пусть – закон прямолинейного движения материальной точки. Обозначим через путь, пройденный точкой за время , а через путь, пройденный за время . Тогда за время точка пройдет путь , равный: . Отношение называется средней скоростью точки за время от до . Чем меньше , т.е. чем короче промежуток времени от до , тем лучше средняя скорость характеризует движение точки в момент времени . Поэтому естественно ввести понятие скорости в данный момент , определив ее как предел средней скорости за промежуток от до , когда :

Величина называется мгновенной скоростью точки в данный момент .

Задача о касательной к данной кривой

Пусть на плоскости задана непрерывная кривая уравнением . Требуется провести невертикальную касательную к данной кривой в точке . Так как точка касания дана, то для решения задачи требуется найти угловой коэффициент касательной. Из геометрии известно, что , где – угол наклона касательной к положительному направлению оси (см. рис.). Через точки и проведем секущую , где – угол, образованный секущей с положительным направлением оси . Из рисунка видно, что , где . Угловой коэффициент касательной к данной кривой в точке может быть найден на основании следующего определения.

Касательной к кривой в точке называется предельное положение секущей , когда точка стремится к точке . Отсюда следует, что .

Определение производной

Математическая операция, требуемая для решения рассмотренных выше задач, одна и та же. Выясним аналитическую сущность этой операции, отвлекаясь от вызвавших ее конкретных вопросов.



Пусть функция определена на некотором промежутке. Возьмем значение из этого промежутка. Придадим какое-нибудь приращение (положительное или отрицательное). Этому новому значению аргумента соответствует и новое значение функции , где .

Составим отношение , оно является функцией от .

Производной функции по переменной в точке называется предел отношения приращения функции в этой точке к вызвавшему его приращению аргумента , когда произвольным образом:

Замечание. Считается, что производная функции в точке существует, если предел в правой части формулы существует и конечен и не зависит от того, как приращение переменной стремится к 0 (слева или справа).

Процесс нахождения производной функции называется ее дифференцированием.

Нахождение производных некоторых функций по определению

а) Производная постоянной.

Пусть , где – постоянная, т.к. значения этой функции при всех одинаковы, то ее приращение равно нулю и, следовательно,

.

Итак, производная постоянной равна нулю, т.е. .

б) Производная функции .

Составим приращение функции:

.

При нахождении производной использовали свойство предела произведения функций, первый замечательный предел и непрерывность функции .

Таким образом, .

Связь между дифференцируемостью функции и ее непрерывностью

Функция, имеющая производную в точке , называется дифференцируемой в этой точке. Функция, имеющая производную во всех точках некоторого промежутка, называется дифференцируемой на этом промежутке.

Теорема. Если функция дифференцируема в точке , то она непрерывна в этой точке.

Доказательство. Придадим аргументу произвольное приращение . Тогда функция получит приращение . Запишем равенство и перейдем к пределу в левой и правой частях при :

Поскольку у непрерывной функции бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции, то теорему можно считать доказанной.

Замечание. Обратное утверждение не имеет места, т.е. из непрерывности функции в точке, вообще говоря, не следует дифференцируемость в этой точке. Например, функция непрерывна при всех , но она не дифференцируема в точке . Действительно:

Предел бесконечен, значит, функция не дифференцируема в точке .

Таблица производных элементарных функций

Замечание. Напомним свойства степеней и корней, используемые при дифференцировании функций:

Приведем примеры нахождения производных.

1) .

2)

Производная сложной функции

Пусть . Тогда функция будет сложной функцией от x .

Если функция дифференцируема в точке x , а функция дифференцируема в точке u , то тоже дифференцируема в точке x , причем

.

1.

Полагаем , тогда . Следовательно

При достаточном навыке промежуточную переменную u не пишут, вводя ее лишь мысленно.

2.

Дифференциал

К графику непрерывной функции в точке проведем касательную MT , обозначив через j ее угол наклона к положительному направлению оси Ох. Так как , то из треугольника MEF следует, что

Введем обозначение

.

Это выражение называется дифференциалом функции . Итак

Замечая, что , т.е. что дифференциал независимой переменной равен ее приращению, получим

Таким образом, дифференциал функции равен произведению ее производной на дифференциал (или приращение) независимой переменной.

Из последней формулы следует, что , т.е. производная функции равна отношению дифференциала этой функции к дифференциалу аргумента.

Дифференциал функции dy геометрически представляет собой приращение ординаты касательной, соответствующее приращению аргумента Dх .

Из рисунка видно, что при достаточно малом Dх по абсолютной величине можно взять приращение функции приближенно равным ее дифференциалу, т.е.

.

Рассмотрим сложную функцию , где , причем дифференцируема по u , а – по х . По правилу дифференцирования сложной функции

Умножим это равенство на dx :

Так как (по определению дифференциала), то

Таким образом, дифференциал сложной функции имеет тот же вид, если бы переменная u была не промежуточным аргументом, а независимой переменной.

Это свойство дифференциала называется инвариантностью (неизменяемостью) формы дифференциала .

Пример. .

Все правила дифференцирования можно записать для дифференциалов.

Пусть – дифференцируемы в точке х . Тогда

Докажем второе правило.

Производная неявной функции

Пусть дано уравнение вида , связывающее переменные и . Если нельзя явно выразить через , (разрешить относительно ) то такая функция называется неявно заданной . Чтобы найти производную от такой функции, нужно обе части уравнения продифференцировать по , считая функцией от . Из полученного нового уравнения найти .

Пример. .

Дифференцируем обе части уравнения по , помня, что есть функция от

Лекция 4. Производная и дифференциал функции одной переменной

Коль скоро я не объяснил (на данный момент), что такое производная функции, то не имеет смысла объяснять, и что такое дифференциал функции. В самой примитивной формулировке дифференциал – это «почти то же самое, что и производная».

Производная функции чаще всего обозначается через .

Дифференциал функции стандартно обозначается через (так и читается – «дэ игрек»)

Дифференциал функции одной переменной записывается в следующем виде:

Другой вариант записи:

Простейшая задача: Найти дифференциал функции

1) Первый этап. Найдем производную:

2) Второй этап. Запишем дифференциал:

Дифференциал функции одной или нескольких переменных чаще всего используют дляприближенных вычислений .

Помимо других задач с дифференциалом время от времени встречается и «чистое» задание на нахождение дифференциала функции. Кроме того, как и для производной, для дифференциала существует понятие дифференциала в точке. И такие примеры мы тоже рассмотрим.

Пример 7

Найти дифференциал функции

Перед тем, как находить производную или дифференциал, всегда целесообразно посмотреть, а нельзя ли как-нибудь упростить функцию (или запись функции) ещё до дифференцирования? Смотрим на наш пример. Во-первых, можно преобразовать корень:

(корень пятой степени относится именно к синусу).

Во-вторых, замечаем, что под синусом у нас дробь, которую, очевидно, предстоит дифференцировать. Формула дифференцирования дроби очень громоздка. Нельзя ли избавиться от дроби? В данном случае – можно, почленно разделим числитель на знаменатель:

Функция сложная. В ней два вложения: под степень вложен синус, а под синус вложено выражение . Найдем производную, используя правило дифференцирования сложной функции два раза:

Запишем дифференциал, при этом снова представим в первоначальном «красивом» виде:

Когда производная представляет собой дробь, значок обычно «прилепляют» в самом конце числителя (можно и справа на уровне дробной черты).

Пример 8

Найти дифференциал функции

Это пример для самостоятельного решения.

Следующие два примера на нахождение дифференциала в точке.

Пример 9

Вычислить дифференциал функции в точке

Найдем производную:

Опять, производная вроде бы найдена. Но в эту бодягу еще предстоит подставлять число, поэтому результат максимально упрощаем:

Труды были не напрасны, записываем дифференциал:

Теперь вычислим дифференциал в точке :

В значок дифференциала единицу подставлять не нужно, он немного из другой оперы.

Как видим, для нахождения дифференциала нужно умножить производную на dx . Это позволяет из таблицы формул для производных сразу записать соответствующую таблицу для дифференциалов.

Полный дифференциал для функции двух переменных:

Полный дифференциал для функции трех переменных равен сумме частных дифференциалов: d f(x,y,z)=d x f(x,y,z)dx+d y f(x,y,z)dy+d z f(x,y,z)dz

Определение . Функция y=f(x) называется дифференцируемой в точке x 0 , если ее приращение в этой точке можно представить в виде ∆y=A∆x + α(∆x)∆x, где A – константа, а α(∆x) – бесконечно малая при ∆x → 0.
Требование дифференцируемости функции в точке эквивалентно существованию производной в этой точке, причем A=f’(x 0).

Пусть f(x) дифференцируема в точке x 0 и f "(x 0)≠0 , тогда ∆y=f’(x 0)∆x + α∆x, где α= α(∆x) →0 при ∆x→0. Величина ∆y и каждое слагаемое правой части являются бесконечно малыми величинами при ∆x→0. Сравним их: , то есть α(∆x)∆x – бесконечно малая более высокого порядка, чем f’(x 0)∆x.
, то есть ∆y~f’(x 0)∆x. Следовательно, f’(x 0)∆x представляет собой главную и вместе с тем линейную относительно ∆x часть приращения ∆y (линейная – значит содержащая ∆x в первой степени). Это слагаемое называют дифференциалом функции y=f(x) в точке x 0 и обозначают dy(x 0) или df(x 0). Итак, для произвольных значений x
dy=f′(x)∆x. (1)
Полагают dx=∆x, тогда
dy=f′(x)dx. (2)

Пример . Найти производные и дифференциалы данных функций.
а) y=4 tg2 x
Решение:

дифференциал:
б)
Решение:

дифференциал:
в) y=arcsin 2 (lnx)
Решение:

дифференциал:
г)
Решение:
=
дифференциал:

Пример . Для функции y=x 3 найти выражение для ∆y и dy при некоторых значениях x и ∆x.
Решение . ∆y = (x+∆x) 3 – x 3 = x 3 + 3x 2 ∆x +3x∆x 2 + ∆x 3 – x 3 = 3x 2 ∆x+3x∆x 2 +∆x 3 ; dy=3x 2 ∆x (взяли главную линейную относительно ∆x часть ∆y). В данном случае α(∆x)∆x = 3x∆x 2 + ∆x 3 .

Если функция дифференцируема в точке, то её приращение можно представить в виде суммы двух слагаемых

. Эти слагаемые являются бесконечно малыми функциями при
.Первое слагаемое линейно относительно
,второе является бесконечно малой более высокого порядка, чем
.Действительно,

.

Таким образом второе слагаемое при
быстрее стремится к нулю и при нахождении приращения функции
главную роль играет первое слагаемое
или (так как
)
.

Определение . Главная часть приращения функции
в точке , линейная относительно
,называется дифференциалом функции в этой точке и обозначается dy или df (x )

. (2)

Таким образом, можно сделать вывод: дифференциал независимой переменной совпадает с её приращением, то есть
.

Соотношение (2) теперь принимает вид

(3)

Замечание . Формулу (3) для краткости часто записывают в виде

(4)

Геометрический смысл дифференциала

Рассмотрим график дифференцируемой функции
. Точки
ипринадлежат графику функции. В точкеМ проведена касательная К к графику функции, угол которой с положительным направлением оси
обозначим через
. Проведем прямыеMN параллельно оси Ox и
параллельно осиOy . Приращение функции равно длине отрезка
. Из прямоугольного треугольника
, в котором
, получим

Изложенные выше рассуждения позволяют сделать вывод:

Дифференциал функции
в точке изображается приращением ординаты касательной к графику этой функции в соответствующей её точке
.

Связь дифференциала с производной

Рассмотрим формулу (4)

.

Разделим обе части этого равенства на dx , тогда

.

Таким образом, производная функции равна отношению её дифференциала к дифференциалу независимой переменной .

Часто это отношение рассматривается просто как символ, обозначающий производную функцииу по аргументу х .

Удобными обозначениями производной также являются:

,
и так далее.

Употребляются также записи

,
,

особенно удобные, когда берется производная от сложного выражения.

2. Дифференциал суммы, произведения и частного.

Так как дифференциал получается из производной умножением её на дифференциал независимой переменной, то, зная производные основных элементарных функций, а также правила для отыскания производных, можно прийти к аналогичным правилам для отыскания дифференциалов.

1 0 . Дифференциал постоянной равен нулю

.

2 0 . Дифференциал алгебраической суммы конечного числа дифференцируемых функций равен алгебраической сумме дифференциалов этих функций

3 0 . Дифференциал произведения двух дифференцируемых функций равен сумме произведений первой функции на дифференциал второй и второй функции на дифференциал первой

.

Следствие . Постоянный множитель можно выносить за знак дифференциала

.

Пример . Найти дифференциал функции .

Решение.Запишем данную функцию в виде

,

тогда получим

.

4. Функции, заданные параметрически, их дифференцирование.

Определение . Функция
называется заданной параметрически, если обе переменныех и у определяются каждая в отдельности как однозначные функции от одной и той же вспомогательной переменной – параметра t :


где t изменяется в пределах
.

Замечание . Параметрическое задание функций широко применяется в теоретической механике, где параметр t обозначает время, а уравнения
представляют собой законы изменения проекций движущейся точки
на оси
и
.

Замечание . Приведем параметрические уравнения окружности и эллипса.

а) Окружность с центром в начале координат и радиусом r имеет параметрические уравнения:

где
.

б) Запишем параметрические уравнения для эллипса:

где
.

Исключив параметр t из параметрических уравнений рассматриваемых линий, можно прийти к их каноническим уравнениям.

Теорема . Если функция у от аргумента х задана параметрически уравнениями
, где
и
дифференцируемые по
t функции и
, то

.

Пример . Найти производную функции у от х , заданной параметрическими уравнениями.

Решение.
.

ЛЕКЦИЯ 10. ДИФФЕРЕНЦИАЛ ФУНКЦИИ. ТЕОРЕМЫ ФЕРМА, РОЛЛЯ, ЛАГРАНЖА И КОШИ.

1. Дифференциал функции

1.1. Определение дифференциала функции

С понятием производной теснейшим образом связано другое фундаментальное понятие математического анализа – дифференциал функции.

Определение 1. Функция y = f (x), определенная в некоторой окрестности точки x , называется дифференцируемой в точке x , если ее приращение в этой точке

y = f (x + x) − f (x)

имеет вид

y = A · x + α(Δx) · x,

где A – постоянная, а функция α(Δx) → 0 при x → 0.

Пусть y = f (x) – дифференцируемая функция, тогда дадим следующее определение.

Определение 2. Главная линейная

часть A · x

приращения

функции f (x)

называется дифференциалом функции в точке x и обозначается dy.

Таким образом,

y = dy + α(Δx) · x.

Замечание 1. Величина dy =

x называется

главной линейной частью

приращения y в связи с тем, что другая часть приращения α(Δx) ·

x при малых

x становится гораздо меньше A ·

Утверждение 1. Для того чтобы функция y = f (x) была дифференцируемой в точке x необходимо и достаточно, чтобы она имела в этой точке производную.

Доказательство. Необходимость. Пусть функция f (x) дифференцируема в точке

x + α(Δx) · x, при

x → 0. Тогда

A + lim α(Δx) = A.

Поэтому производная f ′ (x) существует и равна A.

Достаточность. Пусть существует

f ′ (x), т. е. существует предел lim

F ′ (x).

F ′ (x) + α(Δx),

y = f ′ (x)Δx + α(Δx) · x.

Последнее равенство означает дифференцируемость функции y = f (x).

1.2. Геометрический смысл дифференциала

Пусть l касательная к графику функции y = f (x) в точке M (x, f (x)) (рис. 1). Покажем, что dy величина отрезка P Q. Действительно,

dy = f ′ (x)Δx = tg α x =

" " l

"" " "

" α

Итак, дифференциал dy функции f (x) в точке x равен приращению ординаты касательной l в этой точке.

1.3. Инвариантность формы дифференциала

Если x независимая переменная, то

dy = f ′ (x)dx.

Допустим, что x = ϕ(t), где t независимая переменная, y = f (ϕ(t)). Тогда

dy = (f (ϕ(t))′ dt = f ′ (x)ϕ′ (t)dt = f ′ (x)dx (ϕ′ (t)dt = dx).

Итак, форма дифференциала не изменилась, несмотря на то, что x не является независимой переменной. Это свойство и называется инвариантностью формы дифференциала.

1.4. Применение дифференциала в приближенных вычислениях

Из формулы y = dy + α(Δx) · x, отбрасывая α(Δx) · x, видно, что при малых

y ≈ dy = f ′ (x)Δx.

Отсюда получим

f (x + x) − f (x) ≈ f ′ (x)Δx,

f (x + x) ≈ f (x) + f ′ (x)Δx. (1) Формула (1) и используется в приближенных вычислениях.

1.5. Дифференциалы высших порядков

По определению, вторым дифференциалом от функции y = f (x) в точке x называется дифференциал от первого дифференциала в этой точке, который обозначается

d2 y = d(dy).

Вычислим второй дифференциал:

d2 y = d(dy) = d(f ′ (x)dx) = (f ′ (x)dx)′ dx = (f ′′ (x)dx)dx = f ′′ (x)dx2

(при вычислении производной (f ′ (x)dx)′ учтено, что величина dx не зависит от x и, следовательно, при дифференцировании является постоянной).

Вообще, дифференциалом порядка n функции y = f (x) называется первый

дифференциал

от дифференциала

этой функции, который

обозначается через

dn y = d(dn−1 y)

dn y = f (n) (x)dxn .

Найти дифференциал функции y = arctg x .

Решение. dy = (arctg x)′ · dx =

1+x2

Найти дифференциалы первого и второго порядков функции v = e2t .

Решение. dv = 2e2t dt , d2 v = 4e2t dt2 .

Сравнить приращение и дифференциал функции y = 2x3 + 5x2 .

Решение. Находим

5x2 =

10x)Δx + (6x + 5)Δx

dy = (6x2 + 10x)dx.

Разность между приращением

y и дифференциалом dy есть бесконечно малая высшего

порядка по сравнению с

x , равная (6x + 5)Δx2 + 2Δx3 .

Пример 4. Вычислить приближенное значение площади круга, радиус которого равен 3, 02 м.

Решение. Воспользуемся формулой S = πr2 . Полагая r = 3 , r = 0, 02 , имеем

S ≈ dS = 2πr · r = 2π · 3 · 0, 02 = 0, 12π.

Следовательно, приближенное значение площади круга составляет 9π + 0, 12π = 9, 12π ≈

28, 66 (м 2 ).

Пример 5. Вычислить приближенное значение arcsin 0, 51 c точностью до 0,001. Решение. Рассмотрим функцию y = arcsin x . Полагая x = 0, 5 , x = 0, 01 и

применяя формулу (1)

x) ≈ arcsin x + (arcsin x)′ ·

(arcsin x)′

≈ arcsin 0, 5 +

0, 011 = 0, 513.

1 − (0, 5)2

Пример 6. Вычислить приближенно √ 3

c точностью до 0,0001.

Решение. Рассмотрим функцию y = √ 3

и положим x = 8,

x = 0, 01. Аналогично

по формуле (1)

(√ 3 x)′ =

√3

√ x + x ≈ √ 3 x + (√ 3 x)′ · x,

3√ 3 64

· 0, 01 = 2 + 3 · 4 · 0, 01 ≈ 2, 0008.

p 8, 01 ≈ √ 8 +

2. Теоремы Ферма, Ролля, Лагранжа и Коши

Определение 3. Говорят, что функция y = f (x) имеет (или достигает) в точке α локальный максимум (минимум), если найдется такая окрестность U (α) точки α, что для всех x U (α) :

f (α) ≥ f (x) (f (α) ≤ f (x)).

Локальный максимум и локальный минимум объединяются общим названием

локальный экстремум.

Функция, график которой изображен на рис. 4, имеет локальный максимум в точках β, β1 и локальный минимум в точках α, α1 .

Утверждение 2. (Ферма) Пусть функция y = f (x) дифференцируема в точке α и имеет в этой точке локальный экстремум. Тогда f ′ (α) = 0.

Идея доказательства теоремы Ферма следующая. Пусть для определенности f (x) имеет в точке α локальный минимум. По определению f ′ (α) есть предел при x → 0 отношения

f (α + x) − f (α)

Но при достаточно малых (по абсолютной величине) x

f (α + x) − f (α) ≥ 0.

Следовательно, при таких

x получаем

Отсюда и следует, что

f ′ (α) = lim g(Δx) = 0.

Проведите полное доказательство самостоятельно.

Утверждение 3. (Ролля)

Если y = f (x) непрерывна на

Дифференцируема на

(a, b) и f (a) = f (b), то существует такая точка α (a, b),

что f ′ (α) = 0.

Доказательство. По свойству функций, непрерывных на отрезке, найдутся такие точки x1 , x2 , что

экстремум. По условию теоремы f (x) дифференцируема в точке α. По теореме Ферма f ′ (α) = 0. Теорема доказана.

Теорема Ролля имеет простой геометрический смысл (рис. 5): если крайние ординаты кривой y = f (x) равны, то на кривой y = f (x) найдется точка, в которой касательная к кривой параллельна оси Ox.

Утверждение 4. (Коши) Пусть f (x), g(x) непрерывны на , дифференцируемы на (a, b) и g′ (x) =6 0 при любом x (a, b). Тогда найдется такая точка α (a, b), что

f ′ (α)

g′ (α)

Доказательство. Заметим, что g(a) =6 g(b). Действительно, в противном случае для функции g(x) были бы выполнены все условия теоремы Ролля. Следовательно, нашлась бы такая точка β (a, b), что g′ (β) = 0. Но это противоречит условию теоремы.

Рассмотрим следующую вспомогательную функцию:

F (x) = f (x) − f (a) − f (b) − f (a) (g(x) − g(a)). g(b) − g(a)

Функция F (x) непрерывна на ,

дифференцируема на (a, b). Кроме того, очевидно,

что′

F (a) = F (b) = 0. Поэтому по теореме Ролля найдется такая точка α (a, b), что

F (α) = 0, т. е.

f ′ (α)

g′ (α) = 0.

− g(b)

Отсюда следует

f ′ (α)

g′ (α)

Теорема доказана.

Утверждение 5. (Лагранжа) Если y = f (x) непрерывна на , дифференцируема на (a, b), то найдется такое α (a, b), что

F ′ (α).

Доказательство. Теорема Лагранжа прямо следует из теоремы Коши при g(x) =

Геометрически теорема Лагранжа означает, что на кривой y = f (x) между точками

A и B найдется такая точка C, касательная в которой параллельна хорде AB. y

Решение. Так как функция f (x) непрерывна и дифференцируема при всех

значениях x и ее значения на концах отрезка

Равны: f (1) = f (5)

теорема Ролля на этом отрезке

выполняется. Значение c

определяем

уравнения

f ′ (x) = 2x − 6 = 0, т. е. c = 3.

найти точку

M, в которой

Пример 8. На дуге

AB кривой y = 2x − x

касательная параллельна хорде

Решение. Функция y = 2x −x

непрерывна и дифференцируема при всех значениях

x. По теореме Лагранжа между двумя значениями a = 1,

b = 3 существует значение

x = c, удовлетворяющее равенству y(b) − y(a) = (b − a) ·y′ (c), где y′ = 2 − 2x. Подставив соответствующие значения, получим

y(3) − y(1) = (3 − 1) · y′ (c),

(2 · 3 − 32 ) − (2 · 1 − 12 ) = (3 − 1) · (2 − 2c),

отсюда c = 2, y(2) = 0.

Таким образом, точка M имеет координаты (2; 0).

Пример 9. На дуге AB кривой, заданной параметрическими уравнениями

x = t2 , y = t3 , найти точку

M, в которой касательная параллельна хорде AB, если

точкам A и B соответствуют значения t = 1 и t = 3.

Решение. Угловой коэффициент хорды AB равен

А угловой коэффициент

касательной в точке M (при

t = c) равен

y′

(c)/x′

x′ = 2t,

y′ = 3t2 . Для

определения c по теореме Коши получаем уравнение

yt ′ (c)

xt ′ (c)

т. е. c = 13/6.

Найденное значение c удовлетворяет неравенству 1 < c < 3. Подставив значение t = c в параметрические уравнения кривой, получаем x = 169/36, y = 2197/216. Итак искомая точка M (169/36; 2197/216).



Copyright © 2024 Информационно-справочная система.